

Meso-macro simulation

of the draping of composite textile reinforcements

A. Iwata¹, T. Inoue¹, N. Naouar², P. Boisse² * and S.V. Lomov³

1 : Engineering Development Center,

Toray Industries, Inc., 3-1 Sonoyama 3-chome, Ostu, Shiga 520-0842 Japan

2 : LaMCoS, Université de Lyon, CNRS, INSA Lyon, France

3 : Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, BE-3001 Leuven, Belgium

Textile composite parts with double curved geometry

Composite reinforcements made of continuous fibres can be considered as a **continuous medium**

[Boisse et al, Phil. Trans. 2016]

macro

meso

micro

Macroscopique scale (scale of the part)

Mesoscopic scale (scale of the yarn and of the woven cell)

Microscopic scale (scale of the fibre)

Three scales for textile reinforcement analyses

Most of the simulations are performed at macro scale

Gaping and local buckling cannot be simulated

Meso FE analyses for the entire preform

The analyses are complexe and require long calculation times

Proposed in this work: A meso-macro approach used to limit the meso calculation to a given area.

The geometry considered (double curvature)

The reinforcement considered (double curvature)

Constitutive model for the fabric (macro scale)

Macro-draping model, proposed by Nishii et al. [ECCM-16, 2014],

71/2

XTwo offset shell and membrane share same nodes

Constitutive model for the yarn (meso scale)

$$\underline{\underline{S}} = 2\frac{\partial w}{\partial \underline{C}}$$

$$\underline{\underline{S}} = 2\left(\frac{\partial w_{elong}}{\partial I_{elong}} \frac{\partial I_{elong}}{\partial \underline{C}} + \frac{\partial w_{comp}}{\partial I_{comp}} \frac{\partial I_{comp}}{\partial \underline{C}} + \frac{\partial w_{dist}}{\partial I_{dist}} \frac{\partial I_{dist}}{\partial \underline{C}} + \frac{\partial w_{cis}}{\partial I_{cis}} \frac{\partial I_{cis}}{\partial \underline{C}}\right)$$

Ahmad Shell element made of fiber segments \mathbf{V}_{2}^{1} 5 , ₽́M h n **e**₂, $\mathbf{x}(M)$ Mid-surface $\mathbf{x}(H)$ Fiber segment $\Delta \mathbf{u}\left(\zeta^{1},\zeta^{2}\right) = \sum_{k=1}^{2} N_{k} \Delta \mathbf{u}_{k} - \sum_{k=1}^{2} N_{k} \frac{\zeta^{2}}{2} {}^{i} h_{k} \Delta \alpha_{k} {}^{i} \mathbf{V}_{1}^{k}$ **e**₁

Internal virtual work in the element made from fibers

$$\delta W_{\text{int}}^e = \sum_{f=1}^n \int_{L^f} T^{11f} \, \delta \varepsilon_{11}^{-f} \, dL + \sum_{f=1}^n \int_{L^f} M^{33f} \, \delta \chi_{33}^{-f} \, dL$$

Tension of fibers Bending of fibers

[Liang et al, Composites A, 2017]

The tensile stiffness is large: No shear strain energy: quasi-inextensibility possible slippage

$$\begin{split} & W = W(I_1, I_2, I_3, II_4, II_5) & \underline{M} = \underline{M} \otimes \underline{M}. \\ & I_1 = \operatorname{trace}(\underline{C}), \quad I_2 = \frac{1}{2}(\operatorname{trace}(\underline{C})^2 - \operatorname{trace}(\underline{C}^2)), \quad I_3 = \det(\underline{C}) \\ & II_4 = \underline{C} : \underline{M} \quad \text{and} \quad II_5 = \underline{C}^2 : \underline{M} \\ & \text{Grandeur caractéristique : variation de longueur des fibres} \\ & \text{Invariant associé : } I_{\underline{elong}} = I_4 = \underline{C} : \underline{G_1} \quad \text{Énergie associée : } \\ & W_f(I_4) = \frac{1}{8} \cdot \frac{K}{S_0} \cdot (I_4 - 1)^2 \\ & \text{Changement d'aire dans le plan transverse :} \\ & \text{Grandeur caractéristique : variation d'aire de la section transverse} \\ & \text{Invariant associé : } I_{\underline{aire}} = \sqrt{\frac{I_3}{2}} \\ & \text{Énergie associée : } \\ \hline W_{aire}(I_4) = k_1 \cdot (I_{aire}^{-k_2} - 1)^2 \\ \hline \end{array}$$

 $\sqrt{I_4}$

Changement de forme dans le plan transverse :

Invariant associé:
$$I_{forme} = \sqrt{I_1 - \frac{I_5}{I_4} - 2I_{aire}}$$
Énergie associée: $W_{trans}^{forme} \left(I_{forme}\right) = \frac{1}{2} K_{forme} I_{forme}^2$

Cisaillement le long des fibres :

Invariant associé :
$$I_{cislong} = \sqrt{\frac{I_5}{I_4} - I_4}$$
 Énergie associée : $W_{cislong} = \frac{1}{2} K_{cislong} (I_{cislong})^2$

[Charmetant et al, Comp. Sci. Tech., 2011]

Fabric B

a

b – buckling

Hemispherical forming

Fabric A

Fabric B

h

box-shaped mould

b – buckling S-sliding

FE models for the forming simulations

Large scale meso model (Fabric A)

Calculation cost, hemispherical mould.

Type of simulation To	otal CPU time	
	Fabric A	Fabric B
Macro scale	36 min	31 min
Large meso scale	258 h	No convergence
MMZ	44 h	15 h

Macro-meso zoom simulation of draping (MZZ)

The meso-calculations use **the boundary conditions obtained from the macro-calculations**. The displacements along the edge of the meso-"patch", were extracted from the macro-calculation results along the path corresponding to the edge. The yarns in the meso-calculation are also under contact conditions with the mould and the acrylic plate.

MMZ simulation : Box shape mould

the meso-zoom region

а

b – buckling S-sliding²⁰

Fabric A

Fabric B

More details in [Iwata et al, Composites A, 2019]

