Simulation numérique du comportement mécanique d'un réseau de fibres enchevêtrées et réticulées pour matériau d'âme

Christophe BOUVET

Fadhel CHATTI, Dominique POQUILLON, Guilhem MICHON

14 octobre 2019

Matériau enchevêtré réticulé

Observation au MEB de fibres de carbone enchevêtrées réticulées

<u>Avantages</u>

- Bon amortissement vibratoire [Piollet, 2014]
- Porosité ouverte
- Solution pour recycler des fibres
- Capacité d'intégrer des formes complexes

Inconvénients

• Faible rigidité [Mezeix, 2009]

Procédé de fabrication

Phase de découpe

Torons coupés

Fibres séparées et enchevêtrées sous air comprimé

Fibres enchevêtrées

Pulvérisation de la résine

Fibres enchevêtrées réticulées

Procédé de fabrication [Mezeix,2009]

- Imperfection de la séparation des fibres
- Distribution des orientations des fibres anisotrope à la fin du moulage
- Des contacts libres + des contacts bloqués par les jonctions d'époxy

II. Modèle numérique

Génération de la géométrie numérique

Générer les fibres délimitées par deux points d'intersection

Construire les éléments du modèle

- Fraction volumique = 8,5 %
- $D_{contact}^{exp} = 120^{+140}_{-70} \ \mu m \ [Mezeix, 2010]$
- Distribution des orientations de fibres ?
- Raideurs de jonction d'époxy ?

Détermination Num. de la distribution des orientations de fibres

8

Détermination Num. de la distribution des orientations de fibres

8

Détermination Num. de la distribution des orientations de fibres

8

Détermination Exp. de la distribution des orientations de fibres

- ✓ Observations au MEB d'un enchevêtré comprimé à *f* = 8,5 %
- Seringue graduée avec un orifice découpé (oculus)
- ✓ Séries d'observations à fort grandissement

Orientation des fibres par rapport à l'axe de compression après projection en 2D 8

Détermination Exp. de la distribution des orientations de fibres

Jonction époxy observée au MEB

avec une jonction d'époxy

9

- ✓ Modèle simplifié (raideur de traction + raideur de torsion)
 - Détermination des raideurs

Modèle analytique (théorie des poutres)

✓ Configuration géométrique déduite de l'imagerie MEB

Raideur de traction, Ktension= 0.4 N/mm

➢ Raideur de torsion, Ktorsion= 3.10⁻⁴ N.mm

Simulations numériques du comportement dissipatif d'un matériau d'âme à base de fibres enchevêtrées

II. Modèle numérique

Conditions aux limites

 ✓ Abaqus/Explicit Grand nombre de contacts

- ✓ Surfaces rigides entourant la géométrie numérique
- ✓ Eléments poutre 3D de type Timoshenko (B31)
- Plus de 2000 contacts activés avec la condition de non-pénétration
- ✓ Frottement de Coulomb

II. Modèle numérique

Technique de chargement

- ✓ Rotation des surfaces rigides
- ✓ Annulation des interpénétrations

✓ 3 cycles de chargement

✓ Déformation imposée de 1%

Simulation numérique

- 2460 fibres de carbone
- Diamètre de fibre = $7 \,\mu m$
- Module d'Young des fibres, E = 240 GPa
- Fraction volumique, *f* = 8,5 %
- Coefficient de frottement = 0,05 [Tourlonias 2017]
- Distribution des orientations des fibres anisotrope
- 2 contacts collés sur 3
 - Calculateur CALMIP
 - ✓ 20 processeurs en parallèle
 - 3 GB de mémoire \checkmark
 - Durée de simulation : 84 h

III. Résultats

- Variation des contraintes autour d'une valeur négative
- Stabilité des contraintes de cisaillement

Résultats de simulation numérique

Prise en compte des torons non séparés

Même module de flexion

<u>Résultats de nouvelle simulation numérique</u>

- 1230 fibres de carbone équivalentes
- Diamètre de fibre = $7\sqrt{2} \mu m$
- Module d'Young des fibres, $E_h = E/2 = 120$ GPa
- Fraction volumique, f = 8,5 %٠
- Coefficient de frottement = 0,05 [Tourlonias, 2017] ٠
- Distribution des orientations des fibres anisotrope
- 2 contacts collés sur 3 ٠

- 3^{ème} cycle de chargement
- Bon accord au niveau de la dissipation d'énergie \checkmark

Moins de fibres Courbe numérique moins raide

Moins de ressorts

Partie d'hystérésis

Hystérésis sans composante linéaire

Hystérésis sans composante linéaire

Effet de coefficient du frottement μ et de l'amplitude γ

Dissipation d'énergie due au frottement

Changement de la forme de l'hystérésis

Conclusions

- Comportement en cisaillement d'un réseau de fibres enchevêtrées avec des jonctions bloquant une partie des contacts entre fibres
- Meilleure compréhension de la forme complexe de la courbe d'hystérésis
- Meilleure compréhension de la source de dissipation d'énergie et de son évolution en fonction de l'amplitude de la déformation imposée ou de la valeur du coefficient de frottement

Perspectives

- Etude de l'effet d'autres paramètres morphologiques sur le comportement dissipatif de l'enchevêtré réticulé
 Matériau d'âme à base
- Etude d'amortissement d'une structure sandwich
- Amélioration du procédé de fabrication
- Détermination expérimentale des raideurs de jonctions

Simulations numériques du comportement dissipatif d'un matériau d'âme à base de fibres enchevêtrées

de fibres enchevêtrées

Peaux

Merci de votre attention

- Fadhel Chatti, Christophe Bouvet, Dominique Poquillon, Guilhem Michon, "Numerical analysis of shear stiffness of an entangled cross-linked fibrous material, Int. J. Sol. Struct. (2019).
- Fadhel Chatti, Christophe Bouvet, Dominique Poquillon, Guilhem Michon, "Numerical modelling of shear hysteresis of entangled cross-linked carbon fibres intended for core material". Comput. Mater. Sci. 155 (2018) 350–363.
- Fadhel Chatti, Dominique Poquillon, Christophe Bouvet, Guilhem Michon, "Numerical modelling of entangled carbon fibre material under compression". Comput. Mater. Sci. 151 (2018) 14–24.